Critical Illness Polyneuromyopathy in a Child with Severe Demyelinating Myelitis
Tanja Adamovic, Ariane Willems, Michel Vanasse, Guy D'Anjou, Yves Robitaille, Catherine Litalien and France Gauvin

J Child Neurol 2009; 24; 758 originally published online Mar 4, 2009; DOI: 10.1177/0883073808330166

The online version of this article can be found at:
http://jcn.sagepub.com/cgi/content/abstract/24/6/758

Published by:
SAGE
http://www.sagepublications.com

Additional services and information for Journal of Child Neurology can be found at:
Email Alerts: http://jcn.sagepub.com/cgi/alerts
Subscriptions: http://jcn.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
Citations http://jcn.sagepub.com/cgi/content/refs/24/6/758
Critical Illness Polyneuromyopathy in a Child With Severe Demyelinating Myelitis

Tanja Adamovic, MD, Ariane Willems, MD, Michel Vanasse, MD, Guy D'Anjou, MD, Yves Robitaille, MD, Catherine Litalien, MD, and France Gauvin, MD, MSc

We report a child presenting with severe demyelinating myelitis complicated with critical illness polyneuropathy. This previously healthy 8-month-old boy presented with acute superior limb weakness, absent tendon reflexes, and respiratory failure. Spinal magnetic resonance imaging showed an extensive cervical demyelinating lesion. Spinal cord trauma was suspected and high doses of dexamethasone were administered. Electromyography and nerve conduction studies showed absence of compound muscle action potentials and sural nerve sensory action potential, which was suggestive of a severe Guillain-Barré syndrome. However, intravenous immunoglobulins did not induce any improvement. Afterward, sural nerve biopsy showed a mild neuropathy, but muscle biopsy revealed abnormalities compatible with severe critical illness myopathy. After 5 months of evolution without improvement, the patient died following withdrawal of life support therapy. This case highlights the possible occurrence of critical illness polyneuromyopathy when treatment with corticosteroids are used in patients with acute demyelinating myelitis.

Keywords: critical illness; polyneuropathies; transverse myelitis; neuromuscular diseases; demyelinating disease

Case Report

Our patient was an 8-month-old Caucasian boy, previously healthy, who presented with flaccid paralysis of his superior limbs after a fall from his height. Three weeks earlier he had a cold, and 2 weeks before hospitalization he received a vaccine against influenza virus. At admission,
he had decreased deep tendon reflexes of his superior extremities and required immediate intubation for respiratory failure due to respiratory muscle weakness. A cerebral magnetic resonance imaging study was normal, whereas spinal magnetic resonance imaging demonstrated swelling of the cervical spinal cord from C1 to T1 with a mass effect and with high signal intensity on T2 sequence located centrally. Initially, a diagnosis of incomplete centromedullary spinal cord injury without radiographic abnormality affecting the C1 to C7 region was retained, and the child was consequently treated with high doses of dexamethasone followed by prolonged weaning. Despite corticosteroids, his neurological condition progressively deteriorated within the next few days, and he developed flaccid quadriplegia, diffuse loss of deep tendon reflexes followed by occurrence of clonus, loss of pain sensitivity, and development of horizontal nystagmus. However, he always preserved a normal state of consciousness. Two courses of intravenous immune globulins were administered without any clinical improvement. Repeated magnetic resonance imagings over the next weeks showed progression of the spinal lesion up to the medulla oblongata with increased mass effect, which eventually evolved to severe spinal atrophy from C2 to T1.

A week after admission, nerve conduction studies showed no motor response after median nerve stimulation, and no sensory nerve action potential after sural nerve stimulation suggesting a severe demyelinating or axonal type of Guillain-Barré syndrome associated with a medullar lesion. Despite treatment, electrophysiologic deterioration continued to progress, showing diffuse absence of compound motor action potential after motor median, peroneal, and tibial nerve stimulation, and no sensory nerve action potential on sural nerve stimulation 3 weeks after admission. An extensive microbiology investigation was performed with all results negative. Hematological, biochemical, metabolic, and vasculitic workups were normal as well as acute inflammatory markers and cerebrospinal fluid findings. Serum creatine kinase levels were equally normal. Similarly, ophthalmologic evaluation revealed no signs of optic neuritis.

Due to the atypical and prolonged course of the disease, a nerve and a muscle biopsies were performed. The muscle biopsy was characterized by extensive myosin loss without necrosis or regeneration and without abnormalities suggestive of denervation, which was compatible with critical illness myopathy (Figures 1 and 2). On the sural nerve biopsy, slight signs of axonal neuropathy were associated with multifocal, mild, recent demyelination probably secondary to axonal lesions. However, there was no endoneural inflammation compatible with autoimmune inflammatory neuropathy like Guillain-Barré syndrome.

Prolonged course in the pediatric intensive care unit (5 months) was complicated with several nosocomial infections and unsuccessful attempts of mechanical ventilation weaning. The patient died after a decision to withdraw life support therapy.

Discussion

Intensive care unit–acquired weakness was first described more than 20 years ago in the adult population. Since that time, several reports of intensive care unit–acquired weakness have been published mainly in adults, highlighting common risk factors and delineating the extent of injury.

Although well recognized in adults, intensive care unit–acquired weakness was only occasionally reported in children, and little is known on its prevalence, etiology, clinical significance, and risk factors in this population. A recent review article by Williams et al summarizes the pediatric literature on intensive care unit–acquired weakness consisting of 12 reports of this condition in 20 children and 1 recent prospective study with 14 patients. Among the 34 cases of intensive care unit-acquired weakness consisting of 12 reports of this condition in 20 children and 1 recent prospective study with 14 patients. Among the 34 cases of intensive care unit-acquired weakness reported, none was associated with central nervous system demyelinating disease (eg, transverse myelitis, acute disseminated encephalomyelitis, etc). Intensive care unit–acquired weakness is usually described in critically ill patients in the presence of more than 1 risk factor, including administration of nondepolarizing neuromuscular blocking agent and high-dose corticosteroids. However, some patients have been exposed neither to drug nor to only 1 of 2. Although many of the reported children were treated with corticosteroids and neuromuscular blocking agents before the onset of

---

Figure 1. Muscle biopsy; ×400, adenosine triphosphatase pH 9.4. There is a very extensive loss of sarcomeric myosin, with few normally stained fibers along the edge. Type II fiber atrophy is present.
weakness, it is not possible from the data presented to derive any causative association between these factors, as no controlled study is available.

Although the confirmed or assumed potential adverse effects of high-dose corticosteroids are numerous, they remain a treatment of choice for several severe diseases due to their powerful immunomodulatory actions. Despite the absence of prospective controlled trials, high-dose corticosteroids remain the first-line treatment for acute autoimmune central nervous system demyelination including transverse myelitis, acute disseminated encephalomyelitis, and optic neuritis.

Our patient suffered from severe demyelinating myelitis and consequently was treated with high-dose corticosteroids. Neurological findings at admission were explained by spinal shock. Yet, despite proven spinal cord lesion, clinical findings were always suggestive of lower motor neuron lesions. Neurophysiologic studies obtained early in the course of hospitalization showed abnormalities, which were suggestive of a severe peripheral nervous system injury and specifically a severe demyelinating or axonal form of Guillain-Barré syndrome or critical illness polyneuromyopathy. The diagnosis of Guillain-Barré syndrome was retained on the basis of these neurophysiologic abnormalities early in the course of the disease and the absence of myopathic abnormalities on electromyography, findings not unusual in cases of critical illness polyneuromyopathy. Although electromyography and nerve conduction velocities can reveal abnormalities in patient with critical illness polyneuromyopathy, nerve and muscle biopsies remain the gold standard for establishing the nature and severity of nerve and muscle pathology but is not routinely performed because it is invasive.

Although historically considered extremely rare especially in children, recent reports in adults and children point to coexistence of peripheral nervous system autoimmune inflammation (Guillain-Barré syndrome) and acute autoimmune central nervous system demyelination (transverse myelitis, acute disseminated encephalomyelitis, etc), which is more frequent than previously thought. Despite the fact that in both series the peripheral nervous system involvement was characterized mainly by a demyelinating pattern in nerve conduction velocity studies, significant amount of patients presented principally neurophysiologic characteristics of axonal injury in adult series (34.6% and 46% in pediatric series), unusual finding for the Guillain-Barré syndrome in Western countries. An additional unexplained finding is poor evolution and long-term outcome of patients with combined central and peripheral nervous system demyelination compared with
1. Latronico N, Fenzi F, Recupero D, et al. Critical illness myopathy in the pediatric population. factors, possible treatment options, and evolution in the polyneuromyopathy, delineate its epidemiology, risk efficient noninvasive diagnostic tools for critical illness dulatory treatment like intravenous immunoglobulins. muscle biopsy; relay could be made with other immunomo- neural lesions while waiting for the results of nerve/muscle biopsy; in patients with concomitant axonal type of peripheral nerv is not entirely clear. Although first-line treatment for acute central nervous system demyelination consists of high-dose corticosteroids with prolonged weaning, it might be more beneficial to avoid or rapidly wean this therapy in patients with concomitant axonal type of peripheral nervous system lesion while waiting for the results of nerve/muscle biopsy; relay could be made with other immunomodu-latory treatment like intravenous immunoglobulins. Future prospective studies are needed to evaluate efficient noninvasive diagnostic tools for critical illness polyneuromyopathy, delineate its epidemiology, risk factors, possible treatment options, and evolution in the pediatric population.

References


